Package: BiObjClass 0.1.0

BiObjClass: Classification of Algorithms

Implements the Bi-objective Lexicographical Classification method and Performance Assessment Ratio at 10% metric for algorithm classification. Constructs matrices representing algorithm performance under multiple criteria, facilitating decision-making in algorithm selection and evaluation. Analyzes and compares algorithm performance based on various metrics to identify the most suitable algorithms for specific tasks. This package includes methods for algorithm classification and evaluation, with examples provided in the documentation. Carvalho (2019) presents a statistical evaluation of algorithmic computational experimentation with infeasible solutions <doi:10.48550/arXiv.1902.00101>. Moreira and Carvalho (2023) analyze power in preprocessing methodologies for datasets with missing values <doi:10.1080/03610918.2023.2234683>.

Authors:Tiago Costa Soares [aut, cre], Pedro Augusto Mendes [aut]

BiObjClass_0.1.0.tar.gz
BiObjClass_0.1.0.zip(r-4.5)BiObjClass_0.1.0.zip(r-4.4)BiObjClass_0.1.0.zip(r-4.3)
BiObjClass_0.1.0.tgz(r-4.5-any)BiObjClass_0.1.0.tgz(r-4.4-any)BiObjClass_0.1.0.tgz(r-4.3-any)
BiObjClass_0.1.0.tar.gz(r-4.5-noble)BiObjClass_0.1.0.tar.gz(r-4.4-noble)
BiObjClass_0.1.0.tgz(r-4.4-emscripten)BiObjClass_0.1.0.tgz(r-4.3-emscripten)
BiObjClass.pdf |BiObjClass.html
BiObjClass/json (API)

# Install 'BiObjClass' in R:
install.packages('BiObjClass', repos = c('https://tiagocsoares.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 289 downloads 2 exports 0 dependencies

Last updated 10 months agofrom:d995b07108. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 17 2025
R-4.5-winOKFeb 17 2025
R-4.5-macOKFeb 17 2025
R-4.5-linuxOKFeb 17 2025
R-4.4-winOKFeb 17 2025
R-4.4-macOKFeb 17 2025
R-4.3-winOKFeb 17 2025
R-4.3-macOKFeb 17 2025

Exports:bilexpar10

Dependencies: